

Space Policy and Priorities

Policy and Priorities for Tackling Super Wicked Problems and Avoiding the Tragedy of the Commons (In Space)

Technical Advisor
Secure World Foundation

- Key question: Why is it so hard to solve this issue of space debris?
 - "We went to the Moon...so why can't we do this?"
- Step back and look at it the issue of space debris (and space sustainability) from a broader *public policy perspective*
- What can we learn from attempts to deal with the broader class of collective action problems that is applicable to our problem?
- How does our understanding of collective action problems shape policy strategy for space debris and sustainability going forward?

What is Public Policy?

- "The principled guide to action taken by the administrative executive branches of the state with regard to a class of issues in a manner consistent with law and institutional customs" (Wikipedia)
- "The public and its problems" (Dewey 1927)
- "How issues and problems come to be defined, and how they are placed in the political and policy agenda" (Parsons, 1995)
- "How, why, and to what effect governments pursue particular courses of action or inaction" (Heidenheimer et al, 1990)

Policy Analysis

- Policy analysis has come to be dominated by economics
 - Definition of several alternative courses of action
 - Weighing the costs and benefits of each alternative
 - Choosing the alternative that best satisfies all the criteria
- Continual push for a more "scientific" (i.e., factual and unbiased)
 approach to developing, choosing, and implementing a policy
 option
- In the real world, the process by which policy happens and the people involved in the process play as big (if not a bigger) role than the "science"

Shortcomings of Scientific Policy Analysis

Promoting Cooperative Solutions for Space Sustainability

- Rittel and Webber, "Dilemmas in a General Theory of Planning" (1973)
- Scientific tools for problem solving were becoming more widespread after the "success" in government applications
- Professionals in multiple areas of public service coming under increased attack from the public over perceived failings in solving social problems
- Diagnosed it as a function of all the easy problems having been solved, and the only problems left were "wicked" in nature

SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

Wicked vs Tame Problems

- Tame problems (mathematics, chemistry, chess) have clear
 objectives and resolutions, and can be resolved through application
 of scientific methods
- Wicked problems are those for which a purely scientific/rational approach cannot be applied (Roberts 2000)
 - Cannot explicitly define all the variables
 - Stakeholders have radically different worldviews and timeframes
 - Constraints and resources change over time
 - Problem is never resolved definitively

Characteristics of a Wicked Problem

- 1. Cannot fully describe the problem without knowing what the solution is (the two are intertwined)
- No "stopping rule" (no explicitly-defined end state when you know you're done)
- Solutions are not right or wrong, but better/worse or good/good enough
- 4. Each wicked problem is unique and novel
- Every solution is a "one-shot operation"
- There is no explicitly defined set of all possible solutions from which the "best possible one" can be chosen

It Gets Worse...

"Super Wicked Problems" have all of the characteristics of wicked problems, plus:

- Time is running out
- Those who are causing the problem are also seeking to provide a solution
- Central authority to resolve the problem is weak or non-existent
- Policy responses discount the future irrationally

Root Cause: Collective Action Problems

Promoting Cooperative Solutions for Space Sustainability

- Problems where the group would benefit from everyone taking a particular action, but the cost of doing so makes it implausible for any one individual to do so
- Categorical example: Prisoner's Dilemma
- Many real world examples
 - Pollution
 - Cyber security
 - Management of natural resources (fisheries, forests)
 - Voting

Strategies for Tackling Wicked Problems

Promoting Cooperative Solutions for Space Sustainability

Authoritative

- Put solving the problem in the hands of a few stakeholders who have authority to define problem & develop solution
- Makes decisions & action easier, but the "experts" can be wrong

Competitive

- Many players all compete to solve the problem in their own way
- Improves odds of finding a good solution, but wasteful & can lead to violence (war is a free market with harsher penalties)

Collaborative

- Seek "win-win" solution instead of zero-sum
- Shared costs & pooled resources, but increased transaction costs in developing/implementing solution

Conditions for Employing a Strategy (Roberts 2000)

- Power is concentrated and uncontested -> Authoritative
- Power is distributed and contested -> Competitive
- Power is distributed and uncontested -> Collaborative
- Research shows that people often have to fail into collaboration
 - Only after personal experience with authoritative and competitive strategies can people really understand their shortcomings
 - People have to learn what does not work before they are willing to absorb what are perceived as the "extra costs" of collaboration
 - Goes for interagency process within a government as well as between governments

...Yet There Is Hope

- Significant work by Levin, Cashore, Bernstein, and Auld in dealing with super wicked problems in the context of climate change
- Next few slides summarize their research and findings

Policy Implications of Super Wicked Problems

Promoting Cooperative Solutions for Space Sustainability

- One-shot "big bang" solutions rarely work
 - Require behavioral change by all populations immediately
 - Implementation can produce societal "shocks" that hamper compliance
- How to measure progress?
 - Challenges in identifying real "paradigmatic shift" (as opposed to faux)
 - Discounting of incremental, progressive change that could lead to a positive tipping point
- Recognition of different "levels" of a policy regime, and what can be done at each
 - Different levels may have different policy "windows"
 - Implement incremental change at the lowest level possible (bottom-up approach)

Importance of Path Dependent Processes

Promoting Cooperative Solutions for Space Sustainability

- Why do certain policies, technologies, or institutions endure despite presence of what seems to be a better alternative?
 - Key actions can set a system on a particular path of a branching tree
- Useful characteristics of a policy intervention:
 - Lock-in: a policy intervention that contains a logic that gives it immediate durability
 - Self-reinforcing: the costs of reversing a policy intervention increase over time
 - Increasing returns: the benefits of a policy intervention increase over time, possibly leading to a tipping point
 - Positive feedback: expanding the number of actors participating in the policy intervention reinforces the original support

Strategies For Developing Policies

- Increase the stickiness of a solution
 - Take advantage of what is already sticky
 - Minimize short-term political risk by delaying cost imposition
 - Focus policies at the lowest & multiple levels
- Entrench solution and expand participation/support
 - Build coalitions that can convert short-term interests to the long term
 - Create new interests in line with the super wicked problem
 - Foster values and norms that reinforce the policy intervention

FROM SPACE DEBRIS TO SPACE SUSTAINABILITY

The Tragedy of the Commons

- Concept of "Tragedy of the Commons" was popularized by a 1968
 Science article by Garrett Hardin
 - "Multiple individuals, acting independently and rationally consulting their own self-interest, will ultimately deplete a shared limited resource, even when it is clear that it is not in anyone's long-term interest for this to happen" – Wikipedia
- Hardin suggested only two ways to avoid this tragedy
 - Leviathan (single hegemonic entity to manage the resource)
 - Privatization of the resource

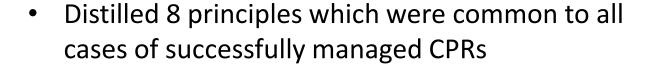
Tragedy is that you can't solve the problem without destroying the commons

SECURE WORLD FOUNDATION

Space as a Common Pool Resource (CPR)

Promoting Cooperative Solutions for Space Sustainability

- Excludable: can prevent others from using the resource
- Rivalrous: someone else's use of the resource precludes your own use of it


	Excludable	Non-excludable
Rivalrous	Private goods food, clothing, cars, personal electronics	Common goods (Common- pool resources) fish stocks, timber, coal
Non-rivalrous	Club goods cinemas, private parks, satellite television	Public goods free-to-air television, air, national defense

Outer space as whole is a public good, but heavily used regions of Earth orbit (LEO, GEO) are Common-Pool Resources (CPRs)

- Won 2008 Nobel Prize in economics for her work on common-pool resources (CPRs)
- Discovered that there are many cases where the tragedy of the commons is false
 - Resources can be managed sustainably without either Leviathan or privatization
 - Resource appropriators self-organize to develop governance model that is suited to local conditions

Ostrom's Principles

- Clearly-defined boundaries of the CPR (effective exclusion of external unentitled parties)
- **2.** Congruence between governance structure or rules and the resource context
- 3. Collective-choice arrangements that *allow most resource appropriators to* participate in the decision-making process
- **4. Effective monitoring** by monitors who are part of or accountable to the appropriators
- Graduated sanctions (penalties) for resource appropriators who violate community rules
- 6. Low-cost and easy-to-access conflict resolution mechanisms
- 7. Self-determination of the community is recognized by higher-level authorities
- 8. In the case of larger common-pool resources: organization in the form of *multiple* layers of nested enterprises

MOVING FORWARD

General Lessons Going Forward

- Learn from other domains, but don't copy/paste ideas
 - Air Traffic Management ≠ Space Traffic Management, but there are some useful concepts that might help
- Technical definitions/approaches are good places to start, but don't ignore politics
 - Wicked problems by definition cannot be solved through purely scientific/rational means
 - Need to have a cultural/behavioral/political dimension as well
- Push for a collaborative solution, but don't be surprised if it's the last thing that gets tried
- Recognize that not all stakeholders have the same perspective/priorities
 - Developed spacefaring countries have a different perspective from developing countries

General Lessons Going Forward (2)

- Focus on developing policy interventions at multiple levels
 - International, national, and individual actor
- Don't discount value of incremental policies, or starting from coalitions of the willing
 - Start with a core constituency, and increase it over time
- Pay attention to the process & actors involved as much as the actual "solution"

Policy Priorities Moving Forward

- Increased harmony between technical standards and regulations on debris mitigation across all space actors
 - Increases benefits to those actors who adopt them
 - Creates a path dependency that makes it hard to go back
- Develop norms of responsible behavior in space that reinforce debris mitigation guidelines and other policy interventions
 - Reward good behavior, and criticize bad
 - Polite peer pressure (from NGOs?)
- Increased access to SSA data for all space actors (and the public)
 - Increases awareness of the problem, builds common understanding
 - Reinforces norms of behavior and costs of acting outside the norms

Thank You. Questions?

bweeden@swfound.org

References

- Dewey (1927) <u>The public and its problems</u>
- Parsons (1995) <u>Public policy</u>.
- Heidenheimer, Heclo, & Teich (1990) <u>Comparative public policy:</u>
- the politics of social choice in America, Europe and Japan
- Rittel & Webber (1973), <u>Dilemmas in a General Theory of Planning</u>, *Policy Sciences*, 4(2), pp 155-169
- Roberts (2000) <u>Wicked problems and network approaches to resolutions</u>, *International Public Management Review*, 1(1), pp 1-19
- Levin, Cashore, Bernstein, & Auld (2012). <u>Overcoming the Tragedy of Super Wicked Problems: Constraining Our Future Selves to Ameliorate Global Climate Change</u>,
 Policy Sciences, 45(2), pp 123-152
- Ostrom (2000) <u>Governing the commons: The evolution of institutions for collective</u> <u>action</u>
- Ostrom (2009) <u>Beyond markets and states: Polycentric governance of complex economic systems</u>, *American Economic Review*