

Satellite Orbital Safety Best Practices

Pablo Minguijon Pallas

2023-05-22

- Background
- Document purpose and overview
- Best practices
 - Design Time
 - Pre-launch and early orbit
 - On Orbit
 - Satellite Disposal
- Q&A

Background

- This document was kickstarted as a combined effort from a couple of AIAA and CARA members.
- CARA and OneWeb have been collaborating for the past years in SSA-related topics.
 - Weekly meeting to coordinate possible encounters between NASA and OneWeb vehicles.
 - On-demand meetings to discuss other more technical matters (accurate modelling, etc).
- OneWeb has explicit coordination agreements with Iridium and SpaceX.
 - Naturally, encounters with SpaceX are more frequent and our pre-coordinated Concept of Operations has proved extremely useful to streamline reactions and responsibility of maneuvering.
 - NDA in place lets us share low level details of our system.
- OneWeb proactive commitment to Space Safety is internationally recognised.
- CARA & AIAA invited us to participate on this document to push forward a series of high-level best practices that could
 foster safer space operations at all levels and with an international vocation.

Document purpose and overview

Wholistic set of best practices by largest operators

- Drawn from thousands of sat-years of operational experience
- The understanding that comes from actually working together to maintain sustainable orbits.
- Regulations must strike the appropriate balance:
 - Maintaining sustainable operations
 - Without stifling innovation or preventing new applications that bring tangible benefits to the public and governments.
- Designed to be applicable to any operator anywhere in the world.
- Ideally, the best practices contained herein can provide a foundation for discussions leading to a global consensus of behaviors.

TABLE OF CONTENTS

NTRODUCTION	3
A: DESIGN TIME	4
B: PRE-LAUNCH AND EARLY ORBIT	7
C: ON ORBIT	9
D: SATELLITE DISPOSAL	12

- "NASA Spacecraft Conjunction Assessment and Collision Avoidance (CARA) Best Practices Handbook"
- Secure World Foundation's "Handbook for New Actors in Space"
- U.S. Space Force's "Spaceflight Safety Handbook for Satellite Operators"
- Space Safety Coalition's "Best Practices for the Sustainability of Space Operations"

OneWeb

Design Time

- Consider collision avoidance (CA) implications when choosing injection and final orbits.
 - Collocation with other objects
 - Separation with respect to other constellations
 - Coordination with neighboring vehicles
 - System-level analysis on risk level and encounter rates
- Ensure the adequacy of spacecraft hardware features to support safety of flight best practices
 - Need for maneuvering capability above human-spaceflight altitudes
 - Trackable, either passively or any form of GNSS
 - Deorbit and Reentry considerations
 - Operations team 24/7 availability
- Ensure the adequacy of satellite / ground system software to support safety of flight best practices.
 - High-fidelity predicted ephemeris
 - Capability to perform Conjunction Assessment

Pre-Launch and Early Orbit

- Create and expeditiously publish your transfer strategy yourself to your final orbit
 - Be open about your mission profile so that other Owner/Operators are aware
 - Create clear communication channels with other major space Owner/Operators sharing the same orbital regions
 - Make basic information on your platform available for Conjunction Assessment purposes (hard body radius, maneuverability)
- Perform Launch Collision Avoidance (LCOLA) against (crewed) space assets
 - Very important against crewed missions
- Coordinate with your cataloguing entity before launch and provide facilitating products during launch and early orbit
 - Establishing cataloguing number/ids for common reference
 - Quick generation of post-launch ephemeris and send to the cataloguing agency
 - Prioritise spacecraft commissioning to enable Collision Avoidance

On Orbit

- Maintain quality O/O predicted ephemerides and spacecraft status information and submit/update this information regularly to the CA screening authority
 - High-fidelity prediction ephemeris, including covariances, following international CCSDS standards and CARA recommendations
 - Keep up to date maneuverability status and capacity to generate high-precision ephemeris
- Perform CA risk assessment to identify high-risk conjunctions that require mitigation
 - Use Probability of Collision as the main metric for CA.
 - Develop internal Concept of Operations that clearly and unambiguously addresses high-interest events via active response or coordination with the other operator.
- Pursue adequate mitigation actions to avoid high-risk conjunctions
 - Mitigation action should both clear the high-risk conjunction at hand and not cause any other close to the Time of Closest Approach
 - Coordinate with the Owner/Operators of the secondary vehicle and develop long-term, standardised response logic

Satellite Disposal

- Actively and expeditiously manage the deorbit of LEO satellites that are reaching the end of their useful mission life
 - In case of satellite failure, keep up to date maneuverability and ephemeris-production capabilities status
 - Controlled reentry can be avoided if complete immolation of the satellite is guaranteed
 - If satellite operating orbit does not meet a natural reentry within 5 years (goal of 1 year), the satellite should be transited to an orbit that does meet that criteria.
 - This transit needs to be ruled by the same recommendations previously mentioned
 - Passivation of the platform prior to lose of maneuverability

Q & A